(x^2+4x-3)-2(x+4)(-2x+2)=0

Simple and best practice solution for (x^2+4x-3)-2(x+4)(-2x+2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+4x-3)-2(x+4)(-2x+2)=0 equation:



(x^2+4x-3)-2(x+4)(-2x+2)=0
We get rid of parentheses
x^2+4x-2(x+4)(-2x+2)-3=0
We multiply parentheses ..
x^2-2(-2x^2+2x-8x+8)+4x-3=0
We multiply parentheses
x^2+4x^2-4x+16x+4x-16-3=0
We add all the numbers together, and all the variables
5x^2+16x-19=0
a = 5; b = 16; c = -19;
Δ = b2-4ac
Δ = 162-4·5·(-19)
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{159}}{2*5}=\frac{-16-2\sqrt{159}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{159}}{2*5}=\frac{-16+2\sqrt{159}}{10} $

See similar equations:

| -2(y+6)=y+3+22y | | 3x+(-2x)+8+(-2)=30 | | 7(10-x)+1=-15 | | 117=9(3+n) | | 1x-10=1x | | 3/2(x-5/6)=49/9 | | 6+4a=-15-3a | | -23=4(8a-7) | | 8x-16=4x-17 | | x/15+1020+x/12=1260 | | −11x=77 | | v/4+8=6 | | x5=2x5=2 | | -3x+4=2-6x | | d/15+1020+d/12=1260 | | 200=8x+5.5 | | 11-(x-5)=6(x+8) | | 8-f+41+f+78=95 | | 3(r+6)=66 | | 2x^2-4=2x(x-8) | | -2=1.5k | | 7(x+8)+2=-10(x-10)-2 | | 2/3(6x-12)+9=6x | | 41.08=8g+3.88 | | (5)/(x+2)-(2x-1)/(5)=0 | | -100=12v-4 | | 8(x+9)+3=-7(x-11)-11 | | 6x-62=26-5x | | 9-(-2r+3)=-3r-4 | | -81=-3(-1+4n) | | y^2/2=9 | | X+78+3x-2=180 |

Equations solver categories